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WHAT WE’LL BE TALKING ABOUT
1. What is association rule learning?

2. What can we do with it?

3. How do we use it…

 Walk through a traditional market basket example

4. …efficiently…

 Introductions to Apriori and FP-growth algorithms

5. …and in some advanced ways?

6. A real world example

 Identifying IBD-safe foods



ASSOCIATION RULE LEARNING - DEFINED
A rule-based machine learning (data mining) method for discovering interesting 
patterns between variables in large databases, in a human-understandable way. 
Two steps:

1. Frequent Itemset Mining (FIM). Find all frequent subsets of items (itemsets), generally as 
measured by a Support threshold. 

2. [Association] Rule Generation. Generate “interesting” rules, commonly as measured by 
Confidence and Lift.



EXAMPLE RULE
It can help to think of them like IF … THEN statements (though that’s not 
technically correct). They help identify (not necessarily predict) the occurrence of 
an item[set] based on the occurrences of other items in the transaction.

Market-Basket Transactions
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules

{Diaper}  {Beer}

{Milk, Bread}  {Eggs, Coke}

{Beer, Bread}  {Milk}

Important note: This relationship implies co-occurrence, not causality!



WHICH RULES ARE IMPORTANT?
Generally, 
 Ones that occur frequently.

 Ones that are “interesting” based on a predetermined measure.

Is frequency really necessary?
 Otherwise it might happen by chance.

 Probably uninteresting from a business perspective.

But what about…
 analyzing rare combinations?

 identifying early trends?

 We’ll touch on these questions when we discuss advanced topics.



WHAT IS GOOD FOR? ABSOLUTELY…LOTS.
Market-basket analysis, 

Web mining, 

Document analysis, 

Telecommunication alarm diagnosis, 

Network intrusion detection,

Bioinformatics

Example #1: In 2004, Walmart 
mined their retail transactions to see 
what people in Florida buy prior to 
the expected arrival of a Hurricane.

Example #2: NASA intern identified 
predictive patterns for geomagnetic 
events on earth from characteristics of 
solar storms on the sun.

Anything where you want to find frequent relationships in data.



WALKING THROUGH AN EXAMPLE
1. We’ll walk through a market-basket problem, while learning terms.

2. Walk through the steps. Internalize the distinct steps now – it will help when 
we discuss different algorithms and efficiency.

 Data preparation

 Frequent Itemset Mining (FIM)

 Rule Generation

3. Build our way to efficiency



BASIC TERMINOLOGY
Transaction. A complete record, made up of underlying items (e.g. a customer’s 
purchase in a single visit).

Itemset. A subset of items within a transaction (e.g. {Eggs, Coke} from {Milk, 
Bread, Eggs, Coke}).

Antecedent. The left-hand side of a rule (e.g. {Milk, Bread} in the rule {Milk, 
Bread}  {Eggs,Coke}).

Consequent. The right-hand side of a rule (e.g. {Milk, Bread} in the rule {Milk, 
Bread}  {Eggs,Coke}).



DATA PREPARATION
Binarize the data. Is an item in our “basket” or not?

 Often a list of lists in Python, if data fits in memory

 Alternatively, preprocessing.binarize in scikit-learn

Generally horizontal layout, but can be vertical or compressed

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout



FREQUENT ITEMSET MINING - SUPPORT
What does it mean for an itemset to be “frequent?”: having a support that meets 
a minimum threshold parameter (“minsup”).

Support: How often an itemset appears as subset of any transaction. It can be 
given as an absolute amount or (more often) as a percentage.

Absolute Support of {Milk, Beer, Diaper}  = 2

Relative Support of {Milk, Beer, Diaper}  = 2/5

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



RULE GENERATION
From frequent itemsets, we want to generate representative rules.

Split each frequent itemset into all combinations of antedecent  consequent…

 {Milk, Beer, Diaper}:

 {Milk}  {Beer}

 {Milk}  {Diaper}

 {Milk}  {Beer, Diaper}

 {Beer}  {Milk}
…

…that meet a threshold for the chosen measure of interestingness.



INTERESTINGNESS MEASURES
Measure the strength of association rules

 The most common are Confidence and Lift, but there are a ton of alternatives:

Added Value
Descriptive Confirmed 

Confidence
J-Measure Mutual Information

All-confidence Difference of Confidence Kappa Odds Ratio

Casual Confidence
Example and Counter-Example 

Rate
Klosgen Phi Correlation Coefficient

Casual Support Fisher's Exact Test Kulczynski Ralambrodrainy Measure

Certainty Factor Gini Index Goodman-Kruskal Lambda Relative Linkage Disequilibrium

Chi-Squared Hyper-Confidence Laplace Corrected Confidence Rule Power Factor

Cross-Support Ratio Hyper-Lift Least Contradiction Sebag-Schoenauer Measure

Collective Strength Imbalance Ratio Lerman Similarity Varying Rates Liaison

Conviction Improvement Leverage Yule's Q

Cosine Jaccard Coefficient MaxConf Yule's Y

Coverage



INTERESTINGNESS MEASURES - CONFIDENCE
Confidence: How frequently items in the consequent appear in transactions that 
contain the antecedent. Only the denominator changes versus Support.

Example:

 Support of {Milk, Beer, Diapers} is 2

 For the rule {Milk}  {Beer, Diapers}
the support of the antecedent is 4

 The rule’s Confidence 2/4 = 0.50

Why use Confidence? 

 Measures the reliability of the inference made by a rule

 Also provides a useful/easy to interpret estimate of conditional probability. Given that a basket 
has milk, we’re 50% sure there’s also beer and diapers.

Problem: Can misrepresent importance, since it doesn’t consider consequent 
frequency. I.e. is the confidence greater than that in the general population?

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



INTERESTINGNESS MEASURES - LIFT
Lift: Measures how much more often X and Y occur together than expected if they 
were statistically independent. A value of 1 indicates independence.

Example

 Support of {Milk, Beer, Diapers} is 2

 For the rule {Milk}  {Beer, Diapers}
the support of the antecedent is 4

 The rule’s Confidence 2/4 = 0.50

 The support of the consequent is 3/5 = 0.60

 The rule’s Lift is 0.50 /  0.60 = 0.833

{Beer, Diapers} already appears in 60% of our transactions, but our rule says 
we’re only 50% sure, meaning we’re actually less confident than we’d expect.

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



THE NAIVE WAY - SET-UP
1. List all possible association rules

 Good luck with that – the number of possible rules is 3d – 2d+1 + 1
where d is the number of items in the dataset.

2. Compute the support and confidence for each rule

3. Prune rules that fail the minsup and minconf thresholds



THE NAIVE WAY - FIM
Even every possible itemset
combination is a LOT…

…in fact, this brute force 
method is still exponential
(2n-1).

With just 40 items, there are 
1.1 trillion possible itemsets!

There has to be a better 
way…



ENTER THE APRIORI RULE
Seminal paper from 1993 by Agrawal, R.; Imielinski, T.; and Swami, A. Mining 
Association Rules between Sets of Items in Large Databases. Improved from 1994-
1998.

Lesser known fact: the idea dates back to the mid-1960s with Petr Hàjek’s
GUHA method (General Unary Hypothesis Automaton).

The Apriori Rule: 

 If an itemset is frequent, then all of its subsets must also be frequent. 

 Conversely, and more important: if an itemset is infrequent, then all of its supersets must be 
infrequent. This is known as the downward-closure property, anti-monotonicity property, or the 
Apriori-property.



APRIORI “SUPPORT PRUNING”
Systematically control the 
exponential growth of candidate 
itemsets by pruning those we 
don’t need to consider.



LET’S SEE IT IN ACTION



BRUTE FORCE VS. APRIORI
Generating 3-candidate itemsets



APRIORI “CONFIDENCE PRUNING”



PYTHON IMPLEMENTATION NOTES
Defaultdict(int) –or – Counter(). We’ll be doing lots of counting

Frozenset()s are immutable and hashable, so can be used as the key in a 
dictionary. They also have the standard set operations (e.g. difference, 
intersection, issubset, union).

itertools chain() and combinations() allow for a more streamlined way to find 
all candidate subsets of different lengths.

Generators allow us to analyze datasets that don’t fit in memory

Pre-made options: Apyori, Mlextend, Orange3-Associate, PyFim, Spark



PROBLEMS WITH APRIORI
1. Generating unnecessary candidates is still slow.

2. The transaction database still needs to be scanned n+1 times.

3. The support threshold, dimensionality, number of transactions, and average 
transaction width all have a large impact on complexity.



ENTER FP-GROWTH
Introduced in 2000 by Han, Pei, and Yin in Mining Frequent Patterns without 
Candidate Generation.

As opposed to a Generate and Test Approach for FIM (generate candidate 
itemsets and test for those that are frequent) like Apriori, FP-Growth uses a 
Pattern Growth Approach, counting occurrences in transactions for frequency of 
itemsets, then extracting frequent itemsets.

Advantages: 

 Avoids excess candidate generation

 Uses only two database scans

 Uses a compact data structure



HOW FP-GROWTH WORKS
Part I: [Iteratively] build compact data structure called an FP-Tree, using two 
passes over the database.

 Pass I: Collect the Support counts for all items (using a dictionary), so we can eliminate 
transactions including infrequent items (thanks to the Apriori rule).

 Pass II: Generate FP-Tree (a compact data structure).

Part II: [Recursively] extract frequent itemsets (FIM) from the FP-Tree using a 
divide and conquer approach



FP-GROWTH- PART I, PASS I

Support

r:3

z:5

h:1

j:1

p:2

y:3

x:4

w:1

v:1

u:1

t:3

s:3

n:1

o:1

q:2

e:1

m:1

Header

Table

z:5

r:3

x:4

y:3

s:3

t:3

TID Transaction

1 r, z, h, j, p

2 z, y, x, w, v, u, t, s

3 z

4 r, x, n, o, s

5 y, r, x, z, q, t, p

6 y, z, x, e, q, s, t, m

TID

Original 

Transaction

Filtered and Sorted 

Transactions

1 r, z, h, j, p z, r

2 z, y, x, w, v, u, t, s z, x, y, s, t

3 z z

4 r, x, n, o, s x, s, r

5 y, r, x, z, q, t, p z, x, y, r, t

6 y, z, x, e, q, s, t, m z, x, y, s, t

Transactions are sorted by 

header counts, descending. A 

common heuristic to allow 

common prefixes to be shared.

Minsup = 3



FP-GROWTH- PART I, PASS II (FP-TREE)

TID

Filtered and Sorted 

Transactions

1 z, r

2 z, x, y, s, t

3 z

4 x, s, r

5 z, x, y, r, t

6 z, x, y, s, t

…

Pointers are maintained 

between nodes containing the 

same item, creating singly 

linked lists (squiggly arrows).

If the first item in the 

transaction doesn’t exist as a 

node, create one…

… while also creating a 

pointer from the header (or 

previous node for the same 

item, if one exists).



FP-GROWTH- PART II (FIM)
1. For each item in our header (starting with the last item), 

we follow the linked list to create a sub-tree (known as a 
Conditional FP-tree). This tree includes all frequent paths 
up to, but excluding the suffix we’re considering. The list of 
all possible paths (and their associated counts) that end 
with that suffix is collectively known as the Conditional-
Pattern base (and made up of Prefix Paths).

2. Each tree is processed recursively to extract frequent 
itemsets.

3. Merge solutions.



FP-GROWTH- PART II, EXAMPLE I
{t}’s sub-tree (conditional pattern bases)

 Two prefix paths: {z, x, y, s}, which appears twice and {z, x, y, r}, which 
appears once – making {t} frequent (we already knew that)

{t, s}’s sub-tree

 One prefix path: {z, x, y}, which appears twice – meaning {t, s} isn’t 
frequent.

{t, r} isn’t frequent either.

{t, z}, {t, x}, {t, y} all are.

{t, y, x}, {t, x, z}, {t, y, z} all are.

{t, x, y, z} is.



FP-GROWTH- PART II, EXAMPLE II
minsup = 2 for this example

For {e}’s conditional FP-tree, {d, e} is frequent. For {d, e}’s tree, {a,d,e} is frequent.

For {e}’s tree, {c, e} is frequent



PYTHON IMPLEMENTATION NOTES
Nothing beyond the notes for Apriori

Pre-made options: Orange3-Associate, PyFim, Spark



IS FP-GROWTH ALWAYS BETTER THAN APRIORI?
No! Which is better? The technically correct answer I always hate hearing: “it 
depends on your use case.”

When to use each algorithm:

 Apriori: When you want to look at low-support items.

 FP-growth: When there are lots of duplicates and/or high dimensionality (candidate itemsets
would be large for Apriori).



ARE THERE OTHER OPTIONS?



ADVANCED TOPICS
1. Tweaking data/parameters

2. More on efficiency

3. Choosing a measure of interestingness / rule selection

4. Infrequent rules

5. Specialized Algorithms

6. More advanced types of rules



TWEAKING DATA/PARAMETERS
Support threshold

 Unfortunately, trial and error. Based on the dataset. 

 General tip: Try 0.20 (20%) and work your way down.

Number of items (dimensionality)

 Many dimensionality reduction techniques

 Tips: eliminations based on domain expertise –or- naively grouping like items

Number of transactions

 Relevant subsetting (e.g. time windows, single store in chain); sampling

Average transaction width

 Similar options to dimensionality reduction



MORE ON EFFICIENCY
We’ve already talked about reducing computational cost by reducing passes over 
the database (e.g. FP-Growth’s advantage), reducing data/data presentation, 
and adding constraints.

Other considerations:

1. Reduce accuracy

 Keep an approx. set of frequent itemsets rather than an exact set.

2. Parallelization

3. Non-batch updating

 Incremental: Update frequent itemsets on database update; can be accomplished by 
keeping a buffer of almost-frequent itemsets in memory.

 Stream: Method described under “reduce accuracy”; Popular algorithm: estDec+

 Interactive: Mine only needed itemsets on-the-fly, as needed; Itemset-Tree algorithm



SELECTING INTERESTINGNESS MEASURES
What are you trying to measure?

Properties and appropriate interesting measures can be found in Selecting the 
right objective measure for association analysis:

 Property I: Symmetry under variable permutation

 Asymmetric measures are used for implication rules, where distinguishing between the strength 
of A -> B and B -> A matters.

 Asymmetric measures: confidence, conviction, Laplace, J-measure.

 Property II: Row/Column Scaling Invariance

 Property III: Anti-symmetry Under Row/Column Permutation

 Property IV: Inversion Invariance

 Property V: Null Invariance

https://www.cse.msu.edu/~ptan/papers/IS.pdf


INFREQUENT ITEMSETS/RULES
Low support, but high confidence rules:

 Use case: Rare association of symptoms indicating a rare disease. 

 [One] Solution: The aptly-named Apriori-Inverse (2005) works like Aprior, but ignores itemsets
above maxsup (instead of below minsup).

 Other solutions: AprioriRare, CORI, etc.



SPECIALIZED ALGORITHMS
What set of items have recently been bought together? (Weighted 
Itemset Mining)

People who bought these X items also bought… (Itemset-Tree)

Which frequent baskets are generating the most profit? (HUIM - EFIM)

How well are our discounting strategies working? (HUIM)

What are the differences between men’s and women’s shopping 
behavior? (Emerging Pattern Mining)

What item sets are purchased periodically? What patterns predict 
those purchases? (Periodic Pattern Mining, Sequential Pattern Mining)



RULE GENERATION ALTERNATIVES
Variants of association rules:

 Context (e.g. market basket analysis based on day of the week)

 Hierarchical

 Categorical

 Clustering

 Quantitative / Importance-weighted

Related topics:

 Sequential Rule Mining. Same as association rule, but with an order restriction. Useful for web page 
prefetching, anti-pattern detection, alarm sequence analysis, and restaurant recommendations.

 Episode Mining. Kind of like sequential, but in a single sequence rather than in a set of sequences. 
Useful for sensor readings, sequences of events on an assembly line, and network traffic data.

 Sub-graph Mining. 



RESOURCES
Python Packages

 Apriori: Apyori, Mlextend, Orange3-Associate, PyFim, Spark 

 FP-Growth: Orange3-Associate, PyFim, Spark

Theory

 Introduction to Data Mining [Book] by Tan, Steinbach, and Kumar. Chapter 6 is free online.

 Mining of Massive Datasets [Book] by Leskovec, Rajaraman, and Ullman. Free Stanford class 
online.

 www.philippe-fournier-viger.com (+ Java implementations at /spmf)

 http://michael.hahsler.net/research/association_rules/measures.html (+ R implementations)

Implementation

 Machine Learning in Action by Peter Harrington (Chapter 11: Apriori, Chapter 12: FP-Growth)

http://www.philippe-fournier-viger.com/
http://michael.hahsler.net/research/association_rules/measures.html


DETERMINING IBD TRIGGER FOODS
USING MACHINE LEARNING AND PYTHON



WHAT’S IBD?

• Inflammatory bowel disease (IBD) describes a 
group of conditions, including Ulcerative Colitis 
(UC) and Crohn’s disease (CD), impacting 1.6 
million people in the US alone.

• Characterized by “gut” inflammation.

• Symptoms range from mild annoyances to life-
threatening issues (blockages, cancer). 

• Autoimmune, caused by a combination of 
genetic and environment factors.



WHAT’S FOOD GOT TO DO 
WITH IT?

•While foods’ relationship with IBD remains 
understudied and controversial…

•…57% of IBD sufferers think diet can trigger 
symptom flare…

•…leading to food avoidance/malnourishment.

• Safe foods are thought to be person specific, 
in contrast to diseases like Celiac or lactose 
intolerance, where food issues are known. 



WHY IT’S PERSONAL TO ME?

• In February 2016 I was diagnosed with 

Crohn’s disease... and 10 ulcers. 

•Medication has me ulcer free, but not symptom 

free. 

• Certain foods can trigger flares lasting weeks. 

• Trial and error to find safe foods is painful 

and takes a long time.

Real ulcers are gross, so here’s some clipart:

You’re welcome.



GOAL – WHAT CAN IBD 
SUFFERERS EAT?

1) Sub-clusters of diet?

2) Relationships between individual foods or 
groups of foods?

3) Nutrients that impact food tolerance?

4) Can food tolerance/intolerance be 
predicted with a reasonable degree of 
accuracy for an IBD sufferer with only a few 
“known” safe/unsafe foods?



MATERIALS

•Small data set: 670, 250-food survey 
responses from IBD sufferers about food 
tolerances. 570 usable.

•Nutrient information for each surveyed food 
from the USDA’s nutrient database API.

•Python 3.6.1 and Jupyter Notebook

•Analysis: apyori, numpy, pandas, PyFIM, 
scikit-learn, scipy, sqlite

•Visualization: graphviz, matplotlib, seaborn The [online] survey utilizes a sliding scale to accept

answer inputs, which are stored as integer values in a

range from 0 through 10. A checkbox for each question

gives the option to not answer questions individually.



ANALYSIS – ASSOCIATION 
RULE LEARNING

•Rules for can eat AND can’t eat.

• E.g. Apple and “Not Apple”

•High dimensionality. Want to keep as many foods 
as possibleCheck out Introduction to Data Mining by Tan, 

Steinbach, and Kumar, Chapter 6 for an 

introduction to the basic concepts (free online).



FP-GROWTH FOR THE 
EFFICIENCY WIN

•FP-Growth took 8 seconds versus Apriori’s 4 minutes 
and 30 seconds.

•PyFim: No many-to-many rules.

 Note: Use `help(fpgrowth)` for argument options

•How good is the model?



[SEMI-]NOVEL APPROACHES

1. Logically ternary data instead of binary

 Adds information, but creates conflicts

 New method of conflict resolution needed

2. Monte Carlo cross-validation

 Association Rule Learning is inherently self 
validating, but need model comparability

 Evaluation method (accuracy) determined 
by applicable subsets of rules, per tested 
transactions



VALIDATION



RESULTS

• Recommendations at least 80%+ accurate, 
usually 90%+

• Average 18-19 new recommendations pp.

• Commonly recommended foods: leeks, lettuce, 
garlic, honeydew melon, cod, cantaloupe, 
chicken eggs, basil, cucumber, white potatoes.

• Commonly conflicting foods: fruit, dairy, 
cruciferous vegetables



THE FULL MODEL

 888,926 rules generated

 Rules for 74% of possible recommendations, 
with >80% confidence

 Can eat rules: animals, ‘staple’ 
veges (carrots, cucumber, lettuce, tomato, 
potato), white rice

 Can’t eat rules: apple juice, coffee, cola, 
raisins

 Cut rules: not alcohol of various types



IBDALIZER

• Recommendation tool using input survey data

• Background output:

Me!



FUTURE WORK

• Update survey for recommendations

• Integrate live recommendation system into 
the survey (with feedback and “learning”)

• Apply more advanced association 
techniques, including hierarchical and 
clustering

• Use my USDA nutrient database tool to 
identify relevant nutrients



WHAT WE LEARNED
1. What association rule learning is.

2. What we can do with it

3. How to use it, via the Apriori and FP-growth algorithms

4. How to be efficient

5. Some advanced techniques



Q&A

zaxrosenberg.com

github.com/zaxr



RESOURCES
Python Packages

 Apriori: Apyori, Mlextend, Orange3-Associate, PyFim, Spark 

 FP-Growth: Orange3-Associate, PyFim, Spark

Theory

 Introduction to Data Mining [Book] by Tan, Steinbach, and Kumar. Chapter 6 is free online.

 Mining of Massive Datasets [Book] by Leskovec, Rajaraman, and Ullman. Free Stanford class 
online.

 www.philippe-fournier-viger.com (+ Java implementations at /spmf)

 http://michael.hahsler.net/research/association_rules/measures.html (+ R implementations)

Implementation

 Machine Learning in Action by Peter Harrington (Chapter 11: Apriori, Chapter 12: FP-Growth)

http://www.philippe-fournier-viger.com/
http://michael.hahsler.net/research/association_rules/measures.html

